O₂ Activating Molecules Inspired by Enzymes and Solid Catalysts

Christian Limberg*, Denise Pinkert, Fabian Schax, Beatrice Braun, Peter Haack

Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor Str. 2, 12489 Berlin, Germany
E-mail: christian.limberg@chemie.hu-berlin.de

CuII–O–CuII cores have recently been proposed as the potential active species responsible for the challenging oxidation of methane to methanol realized at the surface of a Cu-grafted zeolithe[1] as well as in the active center of the copper-enzyme pMMO.[2] The first part of the talk will deal with the synthesis and O₂ reactivity of coordination compounds containing such units, spanned by dinucleating polydentate N-donor ligands. Polydentate siloxides were employed to prepare reactive models for metal-containing silica materials, which will be in the focus of the second part of the presentation. A disilanol and a novel tripodal trisilanol were investigated as a ligand precursor in combination with chromium(II) and iron(II), which in case of iron led to rarely observed square-planar high-spin FeO\textsubscript{4} configurations.[4] The complexes were found to readily react with O₂ and in case of chromium a Lewis-acid stabilized O₂ adduct was isolated.[5]

References:

