Collaborative Research Center/Transregio 63

"Integrated Chemical Processes in Liquid Multiphase Systems"

>Research>Project Area A>Project A10

A10 Gas/Liquid Mass Transfer in Reactive Multiphase Systems

Sub-Coordinators: Prof. Dr.-Ing. Matthias Kraume     Dr.-Ing. Lutz Böhm     Dr.-Ing. Kristin Hecht

Researchers: Dipl.-Ing. Marc Petzold, M. Sc. Nona Afraz

State of the art

The amination of undecanal with hydrogen is a fast reaction. The effective rate of reaction may therefore be limited not only by the reaction kinetics but also by the transport of the gas through the liquid phase. Project A10 investigates the rate-limiting steps of mass transport and reaction for a gas component in reactive, catalyst-containing novel solvent systems. The mass transport in these systems is complex due to the multiple phases, phase interfaces, and transport pathways. Project A10 quantifies the volume-specific mass transport coefficients (kLa) in micellar solvent systems, thermomorphic phase systems, and Pickering emulsions. Using a stirred-tank at the TU Berlin equipped with an endoscope for observing gas bubbles, the mass transport in stirred systems will be investigated and the influence of process parameters such as pressure, temperature, composition, stirring speed, and gas flow rate will be observed. At the Otto-von-Guericke University in Magdeburg, the mass transport rate into the individual phases of thermomorphic phase systems and micellar solvent systems will be quantified. Due to the well-defined laminar film, the mass transport rate can be broken down into one parameter which is the gas/liquid interfacial area (a) and a second parameter (kL) that depends on the rate of transport of the gas through the gas/liquid interface. The goal of the project is to develop a fundamental understanding of gas/liquid mass transport in the reactive phase systems being considered in SFB/TR 63 and to provide a model that can describe the various transport pathways among all of the phases involved.

Connected projects within Collaborative Research Centre/Transregio 63

B1 (Sundmacher, Zähringer): Optimal Reactor Design and Operation for Liquid Multiphase Systems

D1 (Engell, Sadowski, Sundmacher): Fast model-based design of chemical processes with several liquid phases

D2 (Repke): Demonstration of the Fast Track Process Development and of the Optimal Operation of the Reductive Amination of Long-chained Aldehydes in Emulsion Systems

D3 (Skiborowski, Vogt): Development and testing of integrated reaction and catalyst separation for the homogenously catalyzed reductive amination and hydroaminomethylation of long chain alkenes in a miniplant

D4 (Engell, Esche): Control and optimal operation of the reductive amination and of the hydroaminomethylation in the demonstration plants


Recent Publications

Hecht, K. J.;  Velagala, S.; Easo, D. A.; Saleem, M. A.; Krause, U. Influence of Wettability on Bubble Formation from Submerged Orifices. Industrial & Engineering Chemistry Research Article, 59(9), 4071-4078, 2020. [] 

Schulz, J.M.; Junne, H.; Böhm, L.; Kraume, M. Measuring local heat transfer by application of Rainbow Schlieren Deflectometry in case of different symmetric conditions. Experimental Thermal and Fluid Science,  110, 109887, 2020. []

Böhm, L.; Hohl, L.; Bliatsiou, C.; Kraume, M. Multiphase Stirred Tank Bioreactors – New Geometrical Concepts and Scale-up Approaches. Chem. Ing. Tech., 91(12), 1-24, 2019. [DOI: 10.1002/cite.201900165]

Hohl, L.; Panckow, R. P.; Schulz, J. M.; Jurtz, N.; Böhm, L.; Kraume, M. Description of disperse multiphase processes – quo vadis?. Chem. Ing. Tech. 90(11), 1709-1726, 2018. []


Last updated:30-03-2020