Collaborative Research Center/Transregio 63

"Integrated Chemical Processes in Liquid Multiphase Systems"

>Research>Project Area B>Project B8

B8 Characterization, modeling and simulation of phase separation in micellar multiphase systems

Sub-Coordinators: Prof. Dr.-Ing. Matthias Kraume     Prof. Dr.-Ing. Dominique Thévenin

Researchers: Dipl.-Ing. Lena Hohl, M. Sc. Michael Mansour

State of the art

The phase separation process and catalyst recycling is a crucial step for process optimization in micellar multiphase systems. The subproject B8 seeks to analyze the phase separation time and efficiency of the micellar liquid/liquid systems under two-phase and three-phase conditions. Therefore, drop size measurements are performed in-situ with an endoscope technique and the sedimentation and coalescence process is monitored via an external camera. The effects of process conditions such as composition, temperature, agitation speed and reaction progress on drop breakage and coalescence phenomena are investigated in agitated systems. These are at the same time the initial condition for the subsequent phase separation process governed by drop sedimentation and coalescence. Previous work concerning the prediction of drop size distributions in agitated systems with Population balance equations and Computational Fluid Dynamics (CFD) is now supplemented with model development for the phase separation process. Thereby, two different approaches are pursued: Simplified modeling of the separation based on swarm sedimentation and coalescence in the dense-packed zone and a more complex model also including the fluid dynamics in CFD.

Additionally, dispersion and coalescence are investigated in nanoparticle-stabilized emulsions (Pickering emulsions) to identify the impact of particle properties, system composition and process conditions on the drop size distributions. Here again, the drop size analysis is a crucial characteristic for emulsion stability and the available area for mass transfer processes during reaction.

Figure 1: Division of tasks in project B8: Experimental analysis and simplified modeling of drop sizes and phase separation at the TU Berlin (left) and complex numerical description using Computational Fluid Dynamics at the OvGU Magdeburg (right)


Connected projects within Collaborative Research Centre/Transregio 63

A2 (Schomäcker): Influence of catalyst ligand complexes, network analysis of total and sub reaction networks, evaluation of catalyst deactivation
A3 (Hamel, Seidel-Morgenstern): Mechanistic and Kinetic Investigations of the Isomerization, Hydroformylation and Hydroesterification of Petrochemicals and Oleochemicals in Multiphase Fluid Systems
A10 (Böhm, Hecht, Kraume): Gas/Liquid Mass Transfer in Reactive Multiphase Systems
B1 (Sundmacher, Zähringer): Exchange of kinetic data and models, validation of the optimal solvent system as well as dosing and temperature trajectories on reactor and process level
B6 (Drews, von Klitzing): Design of Pickering emulsions for the separation of products with different polarity
D1 (Engell, Sadowski, Sundmacher): Fast model-based design of chemical processes with several liquid phases
D2 (Repke): Demonstration of the Fast Track Process Development and of the Optimal Operation of the Reductive Amination of Long-chained Aldehydes in Emulsion Systems
D4 (Engell, Esche): Control and optimal operation of the reductive amination and of the hydroaminomethylation in the demonstration plants

Recent Publications

Janiga, G., Large-eddy simulation and 3D proper orthogonal decomposition of the hydrodynamics in a stirred tank. Chem. Eng. Sci., 201, 132-144, 2019. []

Mansour, M., Thévenin, D., Nigam, K. D. P. and Zähringer, K. Generally-valid optimal Reynolds and Dean numbers for efficient liquid-liquid mixing in helical pipes., Chem. Eng. Sci., 201, 382-385, 2019. []

Hohl, L.; Kraume, M. The formation of complex droplets in liquid three phase systems and their effect on dispersion and phase separation. Chem. Eng. Res. Des., 129, 89-101, 2018. []

Hohl, L.; Schulz, J.; Kraume, M. Towards Drop Size Modeling in Three Phase Microemulsion Systems. J. Chem. Eng. Jpn., 51(4), 383-388, 2018. [doi:10.1252/jcej.17we291]

Hohl, L.; Panckow, R. P.; Schulz, J. M.; Jurtz, N.; Böhm, L.; Kraume, M. Description of disperse multiphase processes – quo vadis?. Chem. Ing. Tech. 90(11), 1709-1726, 2018. []

Kováts, P.; Pohl, D.; Thévenin, D.; Zähringer, K. Optical determination of oxygen mass transfer in a helically-coiled pipe compared to a straight horizontal tube. Chemical Engineering Science., 190, 237-285, 2018. []

Mansour, M.; Janiga, G.; Nigam, K.D.P.; Thevenin, D.; Zahringer, K. Numerical Study of heart transfer and thermal homogenization in a helical reactor. Chem. Eng., 177, 369-379, 2018. []

Mansour, M.; Khot, P.; Thévenin, D.; Nigam, K. D. P.; Zähringer, K. Optimal Reynolds number for liquid-liquid mixing in helical pipes. Chemical Engineering Science, in press, 2018. []

Misra, A.; Bonamy, C.; Medeiros de Souza, L.; Hohl, L.; Illner, M.; Kraume, M.; Repke, J.-U.; Thévenin, D. A multi-fluid approach to simulate separation of liquid-liquid systems in a gravity settler. Comput.-Aided Chem. Eng. 43, 31-36, 2018. []

Zähringer, K.; Wagner, L.-M.; Thévenin, D.; Siegmund, P.; Sundmacher, K. Particle-image-velocimetry measurements in organic liquid multiphase systems for an optimal reactor design and operation. J. Visualization, 21(1), 5-17, 2018. [doi:10.1007/s12650-017-0435-5]

Hohl, L.; Knossalla, M.; Kraume, M. Influence of dispersion conditions on phase separation in liqiud mutliphase systems. Ind. Eng. Chem. Res., 171, 76-87, 2017. []

Janiga, G.; Stucht, D.; Bordás, R.; Temmel, E.; Seidel-Morgenstern, A.; Thévenin, D.; Speck, O. Non-invasive 4D flow characterization in a stirred tank via phase-contrast magnetic resonance imaging. Chem. Eng. Tech., 40, 1370–1327, 2017. [doi: 10.1002/ceat.201700067]

Misra, A.; de Souza, L. G. M.; Illner, M; Hohl, L.; Kraume, M.; Repke, J.-U.; Thévenin, D. Simulating separation of a multiphase liquid-liquid system in a horizontal settler by CFD. Chem. Eng. Sci., 167, 242-250, 2017. [doi:]

Petzold, M.; Rohl, S.; Hohl, L.; Stehl, D.; Lehmann, M.; von Klitzing, R.; Kraume, M. Mass Transfer and Drop Size Distributions in Reactive Nanoparticle-Stabilized Multiphase Systems. Chem. Ing. Tech., 89(11), 1561-1573, 2017. [doi: 10.1002/cite.201700060]

Schmidt, M.; Pogrzeba, T.; Hohl, L.; Weber, A.; Kielholz, A.; Kraume, M.; Schomäcker, R.: Palladium catalyzed methoxycarbonylation of 1-dodecene in biphasic systems - Optimization of catalyst recycling. Mol. Catal., 439, 1-8, 2017. [doi:org/10.1016/j.mcat.2017.06.014]

Skale, T.; Hohl, L.; Kraume, M.; Drews, A. Feasibility of w/o Pickering emulsion ultrafiltration. J. Membr. Sci ., 535, 1-9, 2017. []

Böhm, L.; Brehmer, M; Kraume, M. Comparison of the Single Bubble Ascent in a Newtonian and a Non-Newtonian Liquid: A Phenomenological PIV Study. Chem. Ing. Tech., 88(1-2), 93–106, 2016. [doi:10.1002/cite.201500105]

Hohl, L.; Paul, N.; Kraume, M. Dispersion conditions and drop size distributions in stirred micellar multiphase systems. Chem. Eng. Process., 99, 149-154, 2016. [doi:10.1016/j.cep.2015.08.011]

Hohl, L.; Röhl, S.; Stehl, D.; von Klitzing, R.; Kraume, M. Influence of Nanoparticles and Drop Size Distributions on the Rheology of w/o Pickering Emulsions. Chem. Ing. Tech., 88(11), 1815-1826, 2016. [doi:10.1002/cite.201600063]

Hohl, L.; Schulz, J.; Paul, N.; Kraume, M. Analysis of physical properties, dispersion conditions and drop size distributions in complex liquid/liquid systems. Chem. Eng. Res. Des., 108, 210-216, 2016. [doi:10.1016/j.cherd.2016.01.010]

Pogrzeba, T.; Schmidt, M.; Hohl, L.; Weber, A.; Buchner, G.; Schulz, J.; Schwarze, M.; Kraume, M.; Schomäcker, R. Catalytic reactions in aqueous surfactant-free multiphase emulsions. Ind. Eng. Chem. Res., 2016. [doi:10.1021/acs.iecr.6b03384]

Skale, T.; Stehl, D.; Hohl, L.; Kraume, M.; von Klitzing, R.; Drews, A. Tuning Pickering Emulsions for Optimal Reaction and Filtration Conditions. Chem. Ing. Tech., 88(11), 1827-1832, 2016. [doi: 10.1002/cite.201600099]

Böhm, L.; Kraume, M. Fluid Dynamics of Bubble Swarms Rising in Newtonian and Non-Newtonian Liquids in Flat Sheet Membrane Systems. J. Membr. Sci., 475, 533-544, 2015. [doi:10.1016/j.memsci.2014.11.003]


Böhm, L. P. Comparison of single bubble and bubble swarm behavior in narrow gaps inside flat sheet membrane modules. Technische Universität Berlin, 2015.

Last updated:15-03-2019